見えない円と正三角形の謎

おもしろかったら友だちとシェアしよう!

タイトル画像のような長方形があります。その長方形の4つの頂点を通るような円を書くには、中心をどのような位置にし、半径の長さをどのような長さにすればようでしょう?

答え

(中心の位置) 対角線の交点

(半径) 対角線の2分の1の長さ

簡単でしたか?こちらは少し難しいですよ。

この長方形ABCDの面積は36平方cmです。この長方形に対して上の問題のようにして円をかきます。その円の面積は?円周率は3.14とします。

答え

113.04平方cm

わからなかった方にもうワンチャンスです。

タイトルにヒントをいれていますが、鍵は正三角形にあります。必要な補助線は対角線BDと頂点Bから対角線ACに垂直におろした点をつないだ線BPです。そして15度の倍は30度です。

817_01

正三角形が見えてきましたか?線BOと線BPの関係に注目したらあと少しです。

三角形AOBの面積はわかりますよね?それと先ほどの補助線の関係を三角形AOBの面積を求める公式としてあてはめてみたら答えまですぐなはずです!

日能研さんの解説

日能研「シカクいアタマをマルくする。」で出題された問題です。

出典
日能研